Kontact $^{\text{\tiny M}}$ N

New nanostructured surface

improves osseointegration and reduces treatment times

SOMMAIRE

A FASTER TREATMENT FOR YOUR PATIENTS
NANOSTRUCTURED SURFACE
HIGHLY HYDROPHILIC SURFACE
IMPROVEMENT AND ACCELERATION OF OSSEOINTEGRATION
HISTOLOGICAL STAINING
COMPLETE AND RELIABLE IMPLANT RANGE
KONTACT™ N IMPLANT REFERENCES
CLINICAL CASES
BIBLIOGRAPHY

A FASTER TREATMENT FOR YOUR PATIENTS

The nanostructured surface of the Kontact[™] N implant was developed to allow:

- The acceleration of osseointegration (via an increase in wettability),
- Decrease of the average marginal bone loss and thus promoting secondary implant stability,
- Early or immediate loading without compromising osseointegration.

Diagram of the progressive decrease in the primary anchor (mechanical) and the gradual increase in secondary stability (biological) during the osseointegration process.

At the beginning of the healing phase, the primary stability (black line), purely mechanical, is responsible for the immobility of the implant¹. Gradually, secondary stability (dotted line) is obtained by a neobone apposition in direct contact with the implant. This biological stability is accelerated in the presence of a highly nanostructured hydrophilic implant surface².

4

Primary stability (preexisting bone)

Secondary stability (neoformed bone)

Nanostructured hydrophilic implant

NANOSTRUCTURED SURFACE

highly hydrophilic for adhesion and proliferation of osteoblasts

A nanostructured material is a material with size structures ranging between 1 and 100 nm. A surface is nanostructured if it has nanoscale roughness characterized by the presence of repetitive dimensions <1µm.

The nanostructured surface is an element conducive to increased adhesion of osteoblasts compared to conventional surfaces³.

Low magnification: osteoblasts on the nanostructured Ti6AI4V titanium alloy surface

Low magnification: osteoblasts on the conventional Ti6Al4V titanium alloy surface

High magnification: osteoblasts on the nanostructured Ti6AI4V titanium alloy surface

High magnification: osteoblasts on the conventional Ti6Al4V titanium alloy surface

Osteoblasts observed using a scanning electron microscope on Ti6Al4V titanium alloy pellets with nanostructured and conventional surfaces. Adhesion time = 1 h (Webster & al. 2014)³.

6

1 hour

Augmentation de l'adhésion des ostéoblastes sur l'état de surface nanostructuré en Titane Ti6Al4V comparé à l'état de surface conventionnel en Titane Ti6Al4V (temps d'adhésion = 1h), (Webster & al. 2014)³.

> Kontact™ N implant surface treatment with nanostructures (Scanning Electron Microscopy)².

HIGHLY HYDROPHILIC SURFACE

The wettability of the surface

plays a significant role in optimizing the bone / implant contact.

Highly hydrophilic surfaces are more favorable than hydrophobic surfaces concerning the interactions with biological fluids, cells and tissues perspectives^{4,5,6.}

The Kontact™ N implant is characterized by a highly hydrophilic nanostructured surface: in favor of bone remineralization.

🖄 BIOTECH DENTAL

Contact angle measurements were performed on the pellets with the Kontact[™] N surface treatment.

The values obtained were all less than 10° and show a highly hydrophilic Kontact™ N surface according to the recommendations of standard EN 828.

Wetting liquid mimics the properties of blood

Angle de contact < 10°

IMPROVEMENT AND ACCELERATION OF OSSEOINTEGRATION

A preclinical study2 on 6 Yucatan miniature pigs was performed to assess osseointegration (BIC %: bone / implant contact) at 4 and 12 weeks **postimplantation** for Kontact[™] N implant (implant test) with titanium grade V micro-rough / nanostructured surface dental versus implant with titanium grade V micro-rough / non-nanostructured surface.

post-implantation.

Percentage of bone / implant contact (BIC) of the control group versus test group at 4 and 12 weeks (* p < 0.05).

The study demonstrates a higher BIC (% bone / implant

contact) for Kontact[™] N implants than for control implants at 4 and 12 weeks:

statistically significant difference in the total BIC value (i.e. in the mandible and maxilla) (p < 0.05) between the control implants and KontactTM N implants at 4 weeks

5

HISTOLOGICAL STAINING

Histological staining (HES and Masson's Trichrome, 1.5x magnification) confirmed a proper osseointegration of the Kontact[™] N implant after 4 and 12 weeks.

Opposite: 2 histological images of Kontact™ N implants inserted in the mandible and maxilla of miniature pigs pendant 4 and 12 weeks.

Mandibule

Mandibule

EZERMEL Text

4 WEEKS

Maxilla

HES histological staining on 2 KontactTM N samples at 4 weeks post-implantation highlighting the presence of bone tissue (pink) in contact with the implants.

Masson's trichrome staining on 2 Kontact™ N samples at 4 weeks post-implantation highlighting the presence of bone mineralization (green) in contact with the implants.

12 WEEKS

Maxilla

HES histological staining on 2 Kontact[™] N samples at 12 weeks post-implantation highlighting the presence of bone tissue (pink) in contact with the implants.

Masson's trichrome staining on 2 Kontact™ N samples at 12 weeks post-implantation highlighting the presence of bone mineralization (green) in contact with the implants.

A COMPLETE AND RELIABLE IMPLANT RANGE

for predictable and esthetic results

- ensures better primary stability.
- the bone insertion effort.
- structure during surgery.

AN EFFICIENT IMPLANT DESIGN

• Cylindro-conical profile: gradual bone condensation

• Surface Increaser: the secondary thread increases the developed surface-area and promotes distribution of pressure on the immediate bone environment.

• Constant Leaf: the continuous sharp wings over the entire length of the implant optimize stability, reducing

• Chamfered and micro-structured implant neck: the

advanced chamfer design holds sufficient coagulum to enable bone construction which reinforces peri-implant soft tissue by creating an additional surface.

• Atraumatic spherical apex protects anatomical

THE APPROPRIATE MATERIAL AND IMPLANT SURFACE

Medical Titanium Alloy - grade V with nanostructured (with dimensions < 1 μ m), micro-rough (Ra=1-2 μ m) and hydrophilic (angle of contact <10°) surface treatment that confer optimal wettability favorable to the adhesion of osteogenic cells for faster osseointegration.

OPTIMAL CONNECTION

Morse-Taper connection (10°): bacterial sealing and perfect implant-abutment adjustment, eliminate micro-movements. It strengthens the mechanical resistance of the implantabutment torque.

STSystem indexation: patented Morse-Taper connection presenting six positions in the implant and three in the abutment. Easy insertion of the abutment enables intuitive, fast and reliable repositioning of the prosthetic components.

Same connection as the Kontact[™] implant

A WIDE RANGE OF PROSTHETIC SOLUTIONS

- telescopic.
- abutments.
- as our specialized CAD/CAM machining center.

LONG-LASTING AESTHETIC **RESULTS FOR YOUR PATIENTS**

- Platform-Switching promotes peri-implant bone and gum tissue stability7,8,9 and enhances aesthetic results.

· Single and multi-unit rehabilitation: cement-retained, screw-retained,

• Stabilization of the prosthesis with a line of Locators® and Iso-Post

• Custom-made abutments with a line of TiBases and Scanbodies as well

• The concave profile of the healing screws in various diameters creates an emergence profile that is perfectly suited to the tooth being replaced.

• The 2 mm subcrestal position increases and consolidates the volume of peri-implant tissue^{10,11,12} which, by forming mucosal domes, promotes the preservation and formation of papilla for lasting aesthetic results.

A SINGLE KIT FOR ALL KONTACT™ IMPLANTS

- **Compact** for optimal storage. ٠
- Readable thanks to colour markings for quick • identification of instruments.
- Practical with fast and easy opening for instrument access.
- Fully disassemblable for a complete ٠ autoclavable cleaning.

PRACTICAL AND EFFECTIVE TOOLS FOR A SUCCESSFUL SURGERY

- ٠ coating.
- Reduced heating of the drill during cutting. ٠
- Protection against oxidation. ٠
- Increased cutting quality and delayed wear.
- assessment of the drilling depth.

Drills and reamers protected by an innovative and patented PVD

More distinct marking: enhances visibility and provides a better

	Reference	Diameter	Length
	K3010N	Ø 3 mm	10 mm
	K3012N		12 mm
	K3014N		14 mm
	K3608N	Ø 3.6 mm	8 mm
	K3610N		10 mm
	K3612N		12 mm
	K3614N		14 mm
	K3616N		16 mm
	K4206N	Ø 4.2 mm	6 mm
	K4208N		8 mm
	K4210N		10 mm
	K4212N		12 mm
	K4214N		14 mm
	K4216N		16 mm
	K4806N	Ø 4.8 mm	6 mm
	K4808N		8 mm
	K4810N		10 mm
	K4812N		12 mm
	K4814N		14 mm
	K5406N	Ø 5.4 mm	6 mm
	K5408N		8 mm
	K5410N		10 mm
	K5412N		12 mm
	K5414N		14 mm

CAS CLINIQUES

1 - Case reported by Dr. Jean-Francois THIBAULT (France)

Site No. 12 restored with a K3610N implant positioned subcrestally (2 mm) in a recently edentulous site following a cavity. A 1- step surgical technique with early provisional loading.

(a) Postoperative retroalveolar.

(b) Provisional loading in the 7 days following ir

(c) Final loading in the 56 days following implan

(d) Retroalveolar at 6 months following implanta

nplantation. ntation. ation.

2 - Case reported by Dr. Michel LAYET (France)

Site No. 46 restored with a K4210N implant positioned subcrestally (1 mm) in a formerly edentulous site (>6 months) following a cavity.

A 1-step surgical technique using the Iso-Post prosthetic system by Biotech Dental.

(a) Postoperative retroalveolar.

(b) Retroalveolar during final loading at 59 days following implantation showing a 1mm supracrestal bone regrowth.

- (c) Retroalveolar at 4 months following implantation showing a 2 mm crestal bone regrowth.

Sites No. 11 and No. 22 restored with two K4210N implants positioned subcrestally (2 mm) in recently edentulous sites (<6 months) following a periodontal disease.

A 2-step surgical technique using the Iso-Post prosthetic system by Biotech Dental.

Sites n°46 and 47

Sites n°36 and 37

- (b) Retroalveolar at 2 months following implantation

- (a) Postoperative retroalveolar. (b) Deferred povisional loading at 68 days post-implantation showing a significant
- supracrestal bone regrowth

3 - Case reported by Dr. Bertrand ROUSSELET (France)

Sites No. 36, 37, 46, 47 restored with 4 K4208N implants positioned subcrestally (0.5mm) in recently edentulous sites as a result of cavities.

A 1-step surgical technique with deferred loading for sites No. 36 and 37 and a 2-step surgical technique for sites No. 46 and 47.

Sites n°46 and 47

Sites n°36 and 37

Sites n°46 and 47

Sites n°36 and 37

4 - Case reported by Dr. Elias KHOURY (France)

Sites No. 25 and 26 restored with K3610N and K4210N implants positioned subcrestally (2 mm) in a formerly edentulous site following a periodontal disease.

A 2-step surgical technique.

(a) Postoperative retroalveolar.

(b) Retroalveolar at 2 months following implantation.

(c) Retroalveolar at 6 months following implantation showing a 2 mm supracrestal bone regrowth.

REFERENCES BIBLIOGRAPHY

1. Davarpanah M, Szmukler-monclers, Khoury PM, Jakubowicz-kohen B, Martinez H. Manuel d'implantologie clinique - 2 éme édition, Protocoles et innovations récentes Reuil-Malmaison : (CDP; 2008).

2. Alain Horrnaert, Luciano Vidal, Romain Besnier, Jean-Francois Morlock, Guy Louarn, Pierre Lavrolle. Biocompatibility and osseointegration of nanostructured titanium dental implants in minipigs. Clinical Oral Implants Research, en révision.

3. Webster, T. J.; Ejiofor, J. U., Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004, 25 (19), 4731-4739.

4. Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J. & Missirlis, Y.F. (2001) Effect of surface roughness of the titanium alloy Ti-6AI-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22: 1241-1251.

5. De Oliveira, P.T. & Nanci, A. (2004) Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 25: 403-413.

6. Jain, R. & von Recum, A.F. (2003) Effect of titanium surface texture on the cell-biomaterial interface. Journal of Investigative Surgery 16:263-273.

7. Atieh MA, Ibrahim HM, Atieh AH. Platform switching for marginal bone preservation around dental implants: a systematic review and meta-analysis. J Periodontol 2010, 81(10): 1350-1366.

8. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000, 71(4): 546-549.

9. Luongo R, Traini T, Guidone PC, Bianco G, Cocchetto R, Celletti R. Hard and soft tissue responses to the platformswitching technique. Int J Periodontics Restorative Dent 2008, 28(6):551-557.

10. Degidi M, Perrotti V, Shibli JA, Novaes AB, Piattelli A, lezzi G. Equicrestal and subcrestal dental implants: a histologic and histomorphometric evaluation of nine retrieved human implants. J Periodontol. 2011 May;82(5):708-15. doi:10.1902/ jop.2010.100450. Epub 2010 Dec 7. PubMed PMID: 21138355.

11. Valles C, Rodríguez-Ciurana X, Clementini M, Baglivo M, Paniagua B, Nart J. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis. Clin Oral Investia, 2018 Mar; 22(2):555-570.doi: 10.1007/s00784-017-2301-1. Epub 2018 Jan 8. Review. PubMed PMID: 29313133.

12.Saleh MHA, Ravidà A, Suárez-López Del Amo F, Lin GH, Asa'ad F, Wang HL. The effect of implant-abutment junction position on crestal bone loss: A systematic review and meta-analysis. Clin Implant Dent Relat Res. 2018 Mar 24. doi:10.1111/ cid.12600. [Epub ahead of print] Review. PubMed PMID: 29575584.

305, Allées de Craponne 13300 Salon-de-Provence - France

> Tel.: +33 (0)4 90 44 60 60 Fax: +33 (0)4 90 44 60 61

> info@biotech-dental.com www.biotech-dental.com

Manufactured by: Biotech Dental. Biotech Dental - A simplified company limited by shares (S.A.S.) with a capital of €24,866,417 - Corporate and Trade Register of Salon de Provence: 795 001 304 - SIRET [business registration number]: 795 001 304 00018 - VAT No.: FR 31 79 500 13 04. Class 1, 2a and 2b medical devices aimed for dental implantology. CE0459. Read the instructions carefully. Images are for representation purpose only. Do not throw in public areas. Imprimerie VALLIERE - 163, Avenue du Luxembourg - ZAC des Molières - 13140 MIRAMAS - France.